FAS | Military | DOD 101 | Systems | Aircraft | ROW ||||
Index | Search | Join FAS

J-10 (Jian-10 Fighter aircraft 10) / F-10

The J-10 [the export version being designated F-10] is a multi-role single-engine and single-seat tactical fighter, with its combat radius of 1,000 km. It is designed for point defensive warfare with performance generatlly matching aircraft such as the Mirage 2000 deployed by Taiwan. Apparently, Chinese engineers are trying to develop the J-10 from a single F-16 provided by Pakistan, and with assistance from Israeli engineers associated with Israelís US-financed Lavi fighter program, which was cancelled in 1987.

The acquisition of Su-27, after China had attempted for years to develop the J-10 aircraft with equivalent technology to perform similar functions, demonstrates a lack of confidence in domestic industrial capabilities. Chinaís record on reverse engineering aircraft has not been impressive, and it remains in doubt whether the J-10 will ever join Chinaís interceptor inventory.

It is unclear what specific technologies and systems Israel has provided, although it is reported that the Jian-10's radar and fire-control system is the Israeli-made ELM-2021 system, which can simultaneously track six air targets and lock onto the four most-threatening targets for destruction. Some experts believe that the Israeli contribution will focus on avionics and radar, with Russia supplying the engines. In December 1991, US intelligence officials announced that Israel was planning to open a government coordinated and sponsored "arms office" in the PRC. In light of what the Israelis have to offer, and what the Chinese need, it was most likely that a transfer of avionics and other technologies developed in the Lavi program would ensue, since there is a void in the Chinese avionics and fire control system capability due to the 1989 termination of a US/Chinese program in response to Tienanmen square.

China and Israel started collaboration in the early 1980's and full-scale cooperation was underway officially by 1984. After the 1987 cancellation of the Lavi, it was taken over by CAIC and the IAI carried on with the development of avionic equipment. However, the Lavi project had included many elements that Israel could not develop by itself, and China cannot obtain these key technologies from the United States, which has consequently substantially increased the technical difficulties of the F10. In addition, there are certain difference between the Israeli and Chinese requirements for the aircraft. Since Israel already already had fighters such as the F-15, its primary requirement for the Lavi was short-range air support and interdiction, with a secondary mission of air superiority. In contrast, the Chinese Air Force is interested in replacing its large fleet of outmoded J-6 and J-7 fighters, for which air superiority capabilities remain a top priority while the air-to-ground attack capability is of secondary importance.

Since neither China nor Israel is capable of developing the propulsion system required by the J-10, in 1991 China acquired the AI31F turbofan engine from Russia for incorporation into the J-10 fighter. This engine is also used in the Su-27 air superiority fighter that Chinese acquired from Russia. The performance of the AL31F engine is significantly better than that of the American PW1120 originally slated for the Lavi, it may be anticipated that the performance of the J-10 will be accordingly enhanced.

The J-10 features a delta wing canard configuration which ensures aircraft stability with widened static stability active control technology. The deep burial of the engine and the extensive use of composite materials for wing-fuselage fusion design reduces the aircraft's radar signature. This aircraft uses control-figured vehicle design and nine independent control planes: two forward wings, two forward wing flaps, two inside elevons, two outside elevons, and one vertical rudder.

In November 1995 the Jian-10 fighter prototype crashed during a test flight, and consequently it was decided to indefinitely suspend manufacturing plans which had anticipated deliveries to users by 1998. By mid-1999 flight testing had resumed, with little prospect of entering service by 2005.


Wing Span
Maximum speed
Cruising speed
Service Ceiling

Sources and Resources

FAS | Military | DOD 101 | Systems | Aircraft | ROW ||||
Index | Search | Join FAS

Maintained by Robert Sherman
Originally created by John Pike
Updated Tuesday, March 28, 2000 7:35:01 PM