The purpose of the LAIRCM program is to protect large aircraft from man-portable missiles. The LAIRCM system will increase crew-warning time, decrease false alarm rates and automatically counter advanced IR missile systems. The missile warning subsystem will use multiple sensors to provide full spatial coverage. The counter-measures subsystem will use lasers mounted in pointer-tracker turret assemblies. To meet AMC's immediate needs, Phase I of the program will equip 20 A/C (12 C-17 and 8 C-130) with currently available technology as a stop-gap measure. Phase II will develop an advanced multi-spectral missile warning and laser based countermeasures system to increase the affordability and effectiveness of the system for the AMC fleet requirement. This requirement is defined in the multi-command LAIRCM ORD 314-92, validated 3 Aug 98. Dividing the program into two-phases was primarily due to cost and schedule constraints. AMC requires the first C-17 be delivered to the field NLT FY03. AMC plans to procure more systems when funding becomes available. However, initially AMC had funding for only the first twenty (20) aircraft, and did not have the available funding to support a risk reduction effort.
ASC/SMI is in the process of developing the acquisition strategy for Phase I. The acquisition strategy being considered is to contract for the procurement of Group B hardware by an integrating contractor and the integration of that hardware into a LAIRCM suite. The integrating contractor would then provide the LAIRCM Group B suite to the Group A contractor(s) for installation on the specified aircraft. An initial cadre of personnel has been assigned to the LAIRCM Program. This cadre is located in the Subsystems SPO (ASC/SM), Wright-Patterson AFB, OH. Our office symbol will be ASC/SMI. This Team will be responsible for leading an Air Force/Industry initiative to develop and implement the acquisition strategy for large aircraft IRCM systems in the near-term. It will also serve as the core group for the permanent organization with program management responsibility for the development and implementation of Group A and Group B and risk-reduction activities over the long-term. The development and proliferation of advanced infrared guided missiles has greatly increased the threat to military and civil aircraft of attack by these low cost antiaircraft missiles. Technology is being developed to counter this threat in form of advance directed laser jammers and associated missile approach warning sensors. Air Force Research Laboratory's Large Aircraft IRCM Advanced Technology Demonstration (LAIRCM ATD) is developing and maturing subsystem and integrated system technologies to counter the ever growing threat from these missiles. The technology development includes advanced concepts such as Closed Loop IRCM that promises a high power laser response to and IR missile engagement with threat adaptable jamming applied to achieve a rapid seeker breaklock. LAIRCM ATD is an OSD DDR&E Affordability Pilot Program that is pushing for innovation in the design and integration approaches for advanced laser IRCM system to reduce development, production and sustainment cost. The program is also supporting SBIR activity that is addressing affordable missile warning technology using alternative low cost sensors and advanced motion detection algorithms. Opportunity exists for commercialization of IRCM technology for limited application to civil airliners, and VIP aircraft. Installation on US Civil Reserve Air Fleet (CRAF) should be considered to protect these aircraft when directed into higher risk areas of the world. Civilian Fleet operation might be considered for special routes where the threat might be high from terrorist or other groups in conflict. The key to affordable IRCM will be found in reducing systems complexity and use of efficient universal integration approaches.